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1 INTRODUCTION

Information visualizations are an efficient means to support the users in understanding large amounts of complex,
interconnected data and are commonly used in visual analytics [38], e-learning [34], and visual information management
platforms. However, the visualization of complex structures and cross-linked data, like affiliations between particular
entities or networks of academic citations, on a computer’s 2D-screen is a challenging task. Optimally presenting such
data is crucial to provide an intuitive way to interact with them effectively and efficiently. However, which kind of
visualization the users perceive as optimal depends on individual factors. Consequently, each user will perceive another
visualization as optimal to impart a specific type of information, motivating research on visualization interfaces that
can adapt to any individual user.

Research on individual differences for user-adaptive interface design reveals that the user characteristics affect visual
search behavior [62, 65, 74, 79]. The users’ cognitive abilities, such as perceptual speed and verbal working memory,
are correlated with eye tracking measures [67, 75]. Users with lower levels of cognitive abilities have been found to
perform worse in terms of completion time and accuracy while interacting with information visualizations [12, 73, 77].
The findings suggest that user characteristics, such as cognitive abilities, prior domain knowledge, and experience
as well as user preferences need to be considered in the design of optimal visualization interfaces and highlight the
urgent need for user-adaptive information visualization systems, which can infer the usefulness of visualization from
interaction data and intervene accordingly. For example, recent research has attempted to infer the users’ individual
differences such as cognitive abilities or confusion from their eye movements to recognize the need for intervention in
user-adaptive information visualization systems [45, 67, 69, 70].

Yet, there are relatively few user-adaptive interface studies that focus on the actual user comprehension of information
when interacting with visualization interfaces in the research literature. This study will focus on the comprehension
of circular and organizational graph types. These graph types have not been addressed in previous studies and differ
strongly from generic information visualizations like bar and radar charts. In consequence, research results on the latter
do not apply to circular and organizational graph types. The bar and radar charts used in previous studies illustrate the
differences and relations between certain quantities, while the graphs used in this study contain textual information
and highlight relations between the depicted entities. Since bar and radar charts are commonly known visualizations,
the participants already possess an existing problem-solving strategy. These generic information visualizations may not
be suitable for evaluating actual comprehension of complex analytic tasks partly because domain knowledge influences
graph comprehension [41].

Comprehension of these graphs and visualizations is concerned with the users’ interpretation of quantitative
information, which depends on the users’ cognitive abilities, such as attention span and short-term visual working
memory [59]. A model of knowledge-based graph comprehension by Freedman and Shah [22] assumes that prior
knowledge and skills interact with a graph’s display characteristics in the course of graph comprehension. Graph
comprehension processes emerge from integrated, sequential sub-processes like encoding graphical descriptions,
information search, and reasoning [9, 43].
Manuscript submitted to ACM
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However, inferring the users’ graph comprehension based on automatically acquired interaction data such as eye
gaze seems a complex task, and very little research has been done in this area. On the other hand, a visual search task’s
success ultimately depends, at least to some extent, on the degree to which the user understands the data representation
and the interpretation of complex information it contains. This relation motivates this study’s approach to use the
users’ predicted success on a visual search task as an indicator for graph comprehension.

Existing research on user-adaptive visualization interfaces has mostly used static machine learning classifiers, which
yielded average performance. Motivated by the success of deep learning in other research areas [37, 78], this study will
make use of state-of-the-art deep learning time series classification algorithms for modeling visual search behavior and
predict the success of a visual search task.

Previously, state-of-the-art performance in TSC (time series classification) was reached by HIVE-COTE, an ensemble
of 37 classifiers that is computationally expensive to train and tune [2]. Motivated by the success of deep learning
models in, e.g., computer vision and natural language processing, such models have also been adapted to TSC [36, 37, 78].
Research has shown that deep learning models like ResNet (Residual Network) reached state-of-the-art performance
while being less computationally expensive than HIVE-COTE [19]. Since the data recorded by the eye tracker is, in fact,
time series data and might include valuable information on the time scale [18], applying TSC models to eye tracking
data can be expected to yield sufficient performance to drive on-line user-adaptive information visualization systems.

Previous computational models predicting the users’ graph comprehension have yielded average performance. This
study aims to exceed these results by providing models that perform good enough to drive on-line user-adaptive
visualization systems. Considering the findings of the influence of time constraint on user’s reading speed and search
behavior [17, 46] and the average performance of simple machine learning models [e.g. 52, 53, 70], we imposed the
time constraint on experimental conditions by experiment design.

This research aims to contribute to the objective of user-adaptive information visualization systems. In that process,
the main objective is to explore if a computational model can infer the users’ need for support based on a given task’s
predicted success. To achieve that, eye tracking data obtained while the user interacts with two graph types are analyzed
to provide a basis for adaptation of the visualization.

To explore the feasibility of real-time prediction while the users interact with a visualization, the classifiers are trained
on sequences of different lengths. This approach will help analyze a computational model’s ability to be integrated into
an on-line user-adaptive information visualization system.

Specifically, the following two research questions are addressed:

(1) To what extent can a computational model predict the users’ visual search task success to detect their need for
support when interacting with an information visualization from sequential eye gaze data?

(2) Is it feasible to infer the users’ task success within the first ten seconds of interaction?

In summary, this study’s key findings are:

(1) MLSTM-FCN (Multivariate Long Short Term Memory Fully Convolutional Network) is the best performing
classifier for the used time series eye gaze data, based on the F1-scores. ResNet (Residual Network) and FCN (Fully
Convolutional Network) do not perform significantly better than the baseline classifier, LR (Logistic Regression).
Task success can be predicted with an accuracy above 0.8.

(2) Although MLSTM-FCN outperforms all other classifiers, its inference time increases linearly to more than one
second on a ten-second sequence. ResNet and FCN should still be considered when near real-time inference is
required.
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This study contributes towards the goal of user-adaptive information visualizations by evaluating the applicability of
a computational model for inferring if an individual user correctly acquires information imparted by a graph from eye
gaze data. This study will focus on the comprehension of circular and organizational graph types. Furthermore, the
feasibility of predictions within the first ten seconds of interaction is explored. Additionally, the performance of three
deep learning classifiers on eye gaze data is assessed.

In this article’s remainder, the related work is discussed (Section 2), and the used research methods (Section 3) are
introduced. After presenting the results (Section 4) and discussing them (Section 5), conclusions are drawn, and future
work is stated (Section 6).

2 RELATEDWORK

Inferring the usefulness of a visualization for a particular user is an essential feature for user-adaptive interfaces. The
users’ visual search task success is a major indicator of the usefulness of visualizations. In the following, related work
in graph comprehension and its link to eye tracking is discussed. Subsequently, research on user-adaptive interfaces is
reviewed, and the gaps addressed by this study are highlighted.

2.1 Graph Comprehension

Many individual factors influence graph comprehension. These properties include perceptual and cognitive abilities [1,
59], prior domain knowledge, and experience in interaction with graph formats [22, 41]. These abilities and skills
come into play over the two fundamental phases of graph comprehension: visual search and reasoning. The individual
differences regarding perceptual and cognitive abilities, domain knowledge, and experience using graphs highlight that
user-adaptive information visualization systems can facilitate graph comprehension in a wide variety of applications.

Early research of graph comprehension by Pinker [59] points out the relation between graph comprehension theory
and perceptual and cognition theory. According to Pinker’s model, graph comprehension is dependent on the users’
attention, capacity in short-term visual working memory, and encoding faculties and emerges from four sub-processes,
where the user assembles a conceptual message in order to solve the task at hand. Before message assembly, the user
searches the graph schema for the required information. Based on Pinker’s model Freedman and Shah [22] propose a
model of knowledge-based graph comprehension. Their model assumes that prior knowledge and skills interact with a
graph’s display characteristics.

Studies suggest that graph comprehension emerges from integrated, sequential sub-processes like encoding graphical
descriptions and retrieve information from them [9, 43]. Specifically, Körner et al. [43] proposed that the search and the
reasoning processes in hierarchical graph comprehension are typically conducted in a sequence. Körner’s findings reveal
that the reasoning process has to be finished before a sequence is used to infer graph comprehension. Comprehension
is then accomplished by extracting information from these relations [43]. Carpenter and Shah [9] found that even for
simple tasks, graph comprehension is a cognitively demanding process. They further state that "graph comprehension
might be more accurate and more complete if the graph’s format were changed" [9, p. 75], highlighting the need for
user-adaptive information visualization systems, which can infer the users’ need for a different perspective on the data,
i.e., another visualization.

The studies introduced above consistently found that graph comprehension depends on various individual factors
such as perceptual and cognitive abilities, domain knowledge, and experience. It was also found that adapting the
visualization to the user may improve graph comprehension. This study addresses the need for user-adaptive information
visualization systems.
Manuscript submitted to ACM
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Furthermore, previous research repeatedly states that visual search is an important phase in graph comprehension,
motivating the use of eye gaze data to infer a user’s graph comprehension. The link between eye movements and search
is described in the following.

2.2 Graph Comprehension and Eye Tracking

Some empirical studies described in the previous section 2.1 have used the eye tracking technique to gather data
during various user experiments since eye tracking is a valuable metric to infer the users’ intrinsic cognitive processes.
The graphs used in this study include textual information organized as nodes to highlight their relations. Since
comprehension of any graph relies on visual information search and individual abilities, these factors are important to
consider. As demonstrated in the following, eye tracking can provide valuable insight into both intrinsic processes,
motivating the use of eye tracking in this study.

2.2.1 Eye Gaze Metrics in Visual Information Search. Eye gaze data has been used in a variety of applications in regards
to information search. Eye tracking data provides insights into the users’ search activity, the relevance of search results,
and the complexity of the search array (the area where the graph’s elements are located) [63]. These insights also
provide valuable information about the success of the visual search phase in graphs.

In information retrieval research, eye gaze data has been used to infer the users’ search activity [66] and to discriminate
the relevance of search results by analyzing the users’ pupillary responses [56]. Research shows that 500 to 4000 ms
(milliseconds) after a stimulus, differences in the users’ pupil size concerning the relevance of a search result can be
detected [56]. The eye gaze reveals the users’ visual search strategy [23], and there are correlations between eye gaze
patterns and user satisfaction [80]. Eye gaze data can also predict the users’ intentions and goals during manipulation
tasks in graphical user interfaces [13].

Further studies suggest that the complexity of the search array [63], as well as the difficulty of the search task [63,
79], influence the patterns of eye movements. Additionally, fixations and saccades provide insights into how much
information is being processed during the search phase; however, how much information is acquired during a fixation
depends on the particular search task [63].

2.2.2 Eye Gaze Metrics to Infer the Users’ Individual Abilities. The users’ individual cognitive abilities and prior
knowledge influence their graph comprehension, task performance and preferred visualization type.

Research on intelligent user interfaces shows that users’ perceptual speed and verbal working memory influence
their eye gaze patterns in general and concerning the task difficulty and visualization type [74]. Cognitive abilities
impact the users’ task performance and satisfaction regarding a particular visualization type [58, 73]. The research
literature also provides evidence that cognitive abilities like perceptual speed, visual and verbal working memory can
be inferred from eye gaze data [67, 70]. Eye movement patterns are used to infer the users’ domain knowledge during
search [10], which also has an impact on graph comprehension (See Section 2.1).

Graph comprehension requires individual abilities and skills that are also relevant to text comprehension [22] and
eye movements are a reliable indicator of the text’s difficulty; the more difficult a text is, the less likely it is that the text
is understood [64].
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2.3 User-adaptive Information Visualization Systems

User-adaptive systems have been evaluated and applied in personalized search [68] or e-learning [34] to support the
individual user during the related tasks or applications. In contrast, user-adaptive information visualization systems
have only recently received increased research interest [e.g. 13, 44, 58, 76].

Early approaches to user-adaptive information visualization systems required active user interaction, experts’
intervention, and have limited generalizability. These limitations make these systems impractical for real-time user-
adaptive systems and, in particular, information visualizations. However, the related studies [25, 26] provide evidence
that user-adaptive systems have a positive impact on the users’ performance. For instance, the system proposed
by Grawemeyer [26] can infer the users’ visualization expertise and preferences during previous tasks by monitoring
visualization selection. The findings suggest that user-adaptive visualizations improve their performance in terms of
accuracy and task completion time.

Another approach by Gotz and Wen [25] makes use of interaction data in the form of mouse clicks to monitor the
users’ behavior in real-time. The findings indicate that interaction data can be used to recognize inefficient usage
patterns and detect the need to intervene by recommending an alternative information visualization, which is a similar
approach to the system proposed in Grawemeyer [26]. However, the usage patterns labeled as suboptimal and the
alternative visualizations have been worked out by experts before the actual experiment, and the system requires
interaction data in the form of mouse clicks or entered text. Since not all visualization interfaces are designed to provide
the possibility for non-visual interactions, such approaches’ generalizability is limited.

Another thread of research uses eye gaze data to make real-time predictions for driving adaptive systems [70]. The
study demonstrates that the users’ eye gaze pattern is an informative feature to infer task type and characteristics,
user performance, and cognitive abilities. The results of the classification experiments, using LR (Logistic Regression),
an SVM (Support Vector Machine), Decision Tree, and an ANN, show that the classification performance of all used
classifiers has been significantly higher than the performance of a baseline classifier, which always selects the most
likely class. LR has consistently been the best performing classifier, corroborating the findings of previous studies [7, 35]
that LR performs well with eye gaze data.

Their study focuses on inferring the users’ cognitive abilities and developing a user-adaptive visualization system
based on the results. In contrast, this study aims to infer the need for intervention by the system based on the predicted
outcome, i.e., if the user will correctly acquire the information imparted by the graph. Furthermore, the classification
experiments using simple machine learning algorithms yield results between 55 % and 60 %, which might not be
sufficient for a real-time system.

In summary, existing research has demonstrated the feasibility of driving user-adaptive information visualization
systems based on eye gaze data. A more direct approach based on the user comprehension is a step forward to building
a computational model to drive such a system. Sophisticated machine learning classifiers for time series classification
can be expected to yield higher performance models, capable of driving on-line user-adaptive information visualization
systems. Importantly, for some classification tasks, the users’ eye gaze pattern contains the most relevant information
at the beginning of the interaction [70].

Conclusively, this study addresses the gaps in the research literature, exemplified by user comprehension of circular
and organizational graphs:

(1) In contrast to previous studies that focused on common visualization types, this research explores graph
comprehension of complex, interconnected circular and organizational graphs using eye gaze data. These graph
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types contain textual information organized as nodes to display their relations, which has not been specifically
considered in the literature.

(2) In previous studies, the users have performed the experiments without restrictive time constraints. This study
imposes a time constraint on the user to simulate conditions as in an realistic scenario like, e.g., e-learning.

(3) This study aims to develop a computational model that can infer if the user has actually correctly acquired
information from their eye movements during interaction with the graph. Previous studies have developed
computational models based on the users’ cognitive abilities like perceptual speed and visual working memory
from eye gaze data, but it is unclear how the user successfully acquires information.

(4) In this study, state-of-the-art deep learning models for time series classification are used to infer user compre-
hension from eye gaze data. Existing research utilized statistical features extracted from segmented eye gaze
data to train basic machine learning classifiers. This approach yielded average performance, which might not
be sufficient to guide visualization adaptation. State-of-the-art time series classification algorithms [33, 37] can
be expected to surpass these results and reach the levels of accuracy required to drive real-time user-adaptive
visualization systems.

3 METHODS

3.1 User Experiment

3.1.1 Experimental Setup. To gather eye gaze data for this study, a user experiment was conducted as part of a
larger industry-linked research project. The experiment was designed to collect the participants’ eye gaze data during
interaction with two different graph types. The circular graph, depicted in Figure 1, highlights the complex structures of
associations between the different entities, which can be centered into inner and outer rings. The organizational graph
in Figure 2 ensures the links among the entities and is useful to determine major interests on a single entity. These
two graph types are chosen since they are frequently used visualizations in industry partner’s software for displaying
different types of information, and this client was interested in comparing their effect on the interacting users. Guchev
et al. [28] considered node-link-group and node-link diagrams, using a circular layout, to study the design of data
visualizations displaying the relationships of the data amongst each other. The authors state that the readability of
graphs for interactive visual exploration requires further research, providing additional motivation for this study. The
experiment design enhances the study’s ecological validity by choosing two graph types used in industrial applications
and considering the relevance of experimental tasks [39].

After a brief training introducing the study, the participants were asked six similar questions for both graphs to
find people’s names, addresses, and connections between people. Specifically, the questions were: 1) Where does [a
person] live? 2) Who lives at [a particular address]? 3) Who lives at [a particular address]? 4) How many directors does
[a particular company] have? 5) Which state do most of the directors of [a particular company] live in and 6) What
connects [one company] to [another company]?. The questions were presented on the top left corner of the screen with
an empty input box to its right.

Since this study is within-subject design, the questions’ presentation order was randomized by a Latin Square
design [42]. Different datasets for the two types of graphs were used to minimize the possible learning effect of
presenting the circular graph first in conditions arrangement. The graph was visible while answering the questions.
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Fig. 1. The circular graph used in the user experiment highlights the complex structures of associations between the different entities.

The static system design allows gaining more control over the possible confounding variables that might have
been introduced if interactive visualization systems were used in this study [cf. 6, 79]. The participants were able to
scroll up and down the screen. A time limit of 45 seconds had been imposed for each session. When the participants
finished the task earlier, the system provided the option of proceeding to the next question. When the time limit was
reached, the system displayed the next question. Each participant finished a total of twelve search sessions (6 × 2,
questions × graph types), with no break between sessions. Font size, lighting conditions, colors, and symbols were kept
constant throughout the whole experiment. The university ethics committee approved the experiment protocol.

3.1.2 Participants. After excluding faulty recordings, the data from 40 participants (23 female, 17 male) with an average
age of 22.15±5.3 years remained in the dataset. Faulty recordings were identified by manually checking the acquired data
for long sequences of zeros or outliers. All the subjects participated in the study without remuneration. The participants
had normal or corrected to normal vision and signed consent forms before their participation. Basic demographic
data such as age, gender, or mother tongue have been gathered. The participants indicated minor familiarity with
circular or organizational graph types like they are used in this study. Further responses regarding familiarity with
information visualization systems and other user perception data were not collected since this study focused on visual
search behavior when interacting with the chosen two graph types.
Manuscript submitted to ACM
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Fig. 2. The organizational graph ensures the links among the entities and is useful to determine major interests on a single entity.

3.1.3 Apparatus. The experiment was conducted on a 15.6" Dell laptop with a resolution of 1366 × 768 pixels. The
laptop’s display’s maximum peak illuminance is 570 nits at a contrast ratio (peak/min) of 540 nits. Those illuminance
parameters have been reported by the laptop’s OS (Operating System). The luminance in the room was kept constant
for all participants.

During the experiment, the users’ eye movements were recorded with the EyeTribe eye tracker1 at a sampling rate
of 60 Hz. The participants were able to interact with the graph via a mouse and a keyboard. The experiment was started
after calibrating the eye tracker. The calibration process was reiterated until the system reported optimal calibration
accuracy. Participants were requested to minimize their upper body movements during the experiment to reduce
undesired artifacts in the signals.

3.1.4 User Performance & Dataset. During the user experiment, the eye movements of 40 participants have been
tracked while they answered six questions for both the circular and the organizational graph. In summary, 240 questions
have been asked to the participants per graph type.

1https://theeyetribe.com/
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On the circular graph, the participants answered 187 out of 240 questions correctly, while on the organizational
graph, the participants answered 186 out of 240 questions correctly. Therefore, it can be assumed that the participants
perceived the two graph types similarly difficult.

On average, a participant answered 77.71 ± 19.67 % of the questions correctly. Seven of them answered all questions
correctly. Since the questions asked to the participants appear rather simple, it might be surprising that 20 % have been
answered incorrectly. It was found that participants’ took ∼ 25 seconds to answer, if their answer was correct, while
they took ∼ 35 seconds if they answered incorrectly. This indicates that the time constraint that was, in contrast to
other studies, imposed on the users influenced the share of correctly answered questions.

Consequently, both datasets are unbalanced for the classification of a correctly or incorrectly answered question,
where ∼ 78% of the data samples belong to the positive and ∼ 22% of the samples belong to the negative class.

3.2 Data Analysis

3.2.1 Pre-processing. Eye tracking data is typically messy [50]. To facilitate optimal and interpretable results, the data
are pre-processed to remove missing values, noise, and unrelated features and correct individual differences in pupil
size.

The Steffen interpolation is applied to remove missing values, which frequently occur due to recording artifacts
from the eye tracker or eye blinks. In contrast to the commonly used cubic spline interpolation [27, 49, 55], the Steffen
interpolation does not produce any local extrema and is, therefore, more suitable for interpolating eye gaze data [30].

Subsequently, a periodic 10-point Hann moving window average is applied to filter out the noise and unrelated
features from the eye tracking data [31, 32].

Subtractive baseline correction is applied to correct individual differences in pupil size [50]. To keep the experimental
conditions as realistic as possible, no separate screen to measure the pupillary baseline was incorporated. Instead, the
average of the first ten data samples is used as the baseline value as suggested in the literature [50]. This is equal to the
average pupil size during the first 166 ms of the recording, which is well below the latency of pupillary responses to a
stimulus, as found in relevant psychological studies [5, 20]. If more samples would be used for computing the baseline
value, the pupil size could already be affected by the experiment’s external stimulus and lead to a distorted baseline
value.

3.2.2 Feature Calculation. An eye tracker provides information about the viewer’s eye gaze in terms of fixations and
saccades. Additionally, information about the participants’ pupil size is recorded. Goldberg and Helfman [24] described
basic eye tracking measures based on fixations and saccades for comprehensible eye gaze data processing.

The fixation-based measures are commonly used in eye gaze data analysis [8, 35, 47, 70] as they are an indicator of
how much data is actually processed by the user [63]. Saccadic features are also included since they are useful to reveal
trends in the users’ attention patterns [24, 35, 70]. Pupil dilation is included since it has been found to provide insight
into decision-making [71] and reveals the relevance of search results [56]. Additionally, saccadic velocity is used to
provide insight into task difficulty and variation in mental workload [14, 15].

Based on these measures, basic statistics (mean, standard deviation, sum) are calculated for each time step as
𝑣𝑡 = 𝑓 (𝑏0,𝑏𝑡 ) where 𝑣 is the feature value at time step 𝑡 and is calculated as a function 𝑓 (sum, mean, standard deviation)
of the basic metric (e.g. pupil size) values from the beginning of the data 𝑏0 to the current time step 𝑏𝑡 . All calculated
features are listed in Table 1.

The time series obtained by calculating these features are illustrated in Figure 3.
Manuscript submitted to ACM
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Gaze Measure Feature

Fixations
Fixation rate: fixations per millisecond
Number of Fixations
Fixation duration:
sum, mean and standard deviation

Saccades

Saccade length:
sum, mean and standard deviation
Relative saccade angle:
sum, mean and standard deviation
Absolute saccade angle:
sum, mean and standard deviation
Saccadic Velocity:
Saccade length over time (pixel/milliseconds)

Pupil
Diameter

Left eye:
absolute value, mean and standard deviation
Right eye:
absolute value, mean and standard deviation

Table 1. The feature set contains 21 features, which are calculated for each time step in the data.

Fig. 3. Illustration of the time series obtained by calculating the aforementioned features for both graph types. 21 features have been
calculated from each participant’s eye gaze data while he or she answered a question. The limit for answering a question was 45
seconds. If a participant did not require that long, the time series was zero-padded. The participants’ eye movements were tracked at
a sampling frequency of 60 Hz. Overall, each graph type dataset contained 240 multivariate time series, which have been fed to the
model along with a label to indicate if the corresponding question has been answered correctly (positive class) or not (negative class).

3.2.3 Baseline Classifier. LR (Logistic Regression) has been found to work well with eye gaze data by multiple studies
[7, 35, 70] and is therefore chosen as the baseline classifier for this research. As it is not specifically designed to handle
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time series data, the features used in the multivariate time series dataset (See also Table 1) have been calculated over the
whole time segment, i.e., the length of the recorded data. The results of the baseline classifier are also cross-validated
on ten folds. The data has been split on a "user-basis", i.e., the training set contained the data of 36 participants while
the test set contained the data of the remaining four participants.

3.2.4 Time Series Classification. Three deep learning classifiers, MLSTM-FCN, ResNet, and FCN, have been trained for
this study. These classifiers have been chosen since they have shown high performance on time series classification
problems.

The first model, an MLSTM-FCN with attention mechanism, has been proposed by [37] and outperformed the
respective state-of-the-art model on 23 out of 35 publicly available datasets in the study. Additionally, the univariate
variant of this model [36] has been successfully used in activity recognition [48] and aggressive driving detection
[54]. An attention mechanism further improves the LSTM’s ability to learn long term-dependencies by contextualizing
currently and previously observed data and was originally proposed for neural machine translation of text [3]. Attention
conditions a context vector 𝜏 on the target sequence y. The context vector contains weights which are adjusted according
to the correlation between the elements in the sequence. This happens while the network is trained. When inferring
unseen data, the context vector 𝜏 is used to compute how strongly the elements of the unseen data correlate with the
elements in 𝜏 . This value is then used to approximate the target value of the new data. [3]

Wang et al. [78] have proposed variants of ResNet and FCN, which have been successful in computer vision, adapted
to TSC. A review of various deep learning models for TSC found that ResNet and FCN are the superior performing
classifiers after being applied to twelve publicly available multivariate time series datasets [33]. Both classifiers have
been successfully used in further research. ResNet has shown good performance in activity recognition [48], whereas
FCN has been considered in another review of deep learning for TSC and ECG (electrocardiogram) classification [61].

The common hyperparameter of the three evaluated models are summarized in Table 2. The models have been used
with the same hyperparameter and implementation as in the original studies. The experiments are conducted on a
single NVIDIA GeForce GTX 1070. To counter the class imbalance in the dataset, class weights inspired by King and
Zeng [40] are assigned during the training of all models. To avoid overfitting, 10-fold cross-validation has been applied,
and the training has been stopped early if the validation loss did not improve for 100 epochs[16, 21].

The used code will be published after the publication of this study to enhance the reproducibility of results.

Hyperparameter Value
Initial Learning Rate 0.001
Optimizer Adam
Batch Size 128
Max. Epochs 1000

Table 2. Common hyperparameter of the three used models. The initial learning rate is reduced after training loss did not improve for
50 epochs. Training is stopped if the validation loss did not improve for 100 epochs.

To ensure generalizable results, the models have been evaluated regarding efficiency and effectiveness. The data is
split into training and test sets using 10-fold cross-validation, resulting in a training set containing 36 participants’ data
and a test set containing data of four participants. As the negative class only accounts for 22.29 % of the data samples,
the F1-score is chosen over accuracy to evaluate the models’ effectiveness. The F1-score is calculated as a weighted
harmonic mean of precision (P) and recall (R) as suggested in [57]: 𝐹1 = 2𝑃𝑅

𝑃+𝑅 . The models have been trained to classify
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if the user will answer a particular question correctly (positive class) or not (negative class). Which performance in
terms of F1-score is sufficient, largely depends on the specific application of a user-adaptive information visualization
system. Since this study aims to provide a basis for developing such systems instead of developing one, no statement
regarding which F1-score is considered a success can be made. The models’ efficiency is evaluated based on the models’
inference time per sample in milliseconds (ms).

4 RESULTS

The dataset is split by graph type, as it can be expected that eye movements vary between different graphs due to the
different search array [63]. At first, the experiments are conducted by using the three classifiers described in Section
3.2.4. Secondly, the data is truncated to sequence lengths from one to ten seconds to evaluate if task success can be
predicted within the first ten seconds of user interaction with the graph. Current empirical evidence suggests that
10% of a user’s interaction can provide early prediction of user cognitive abilities in visualization tasks [11]. An online
user-adaptive system that requires more than ten seconds to infer the users’ need for support appears impractical and,
thus, sequences that are longer than ten seconds are not evaluated.

All models are trained to predict if the users’ answers to a particular question would be correct or incorrect (binary
classification).

The results are compared with the baseline classifier, and a two-sample Wilcoxon test under the non-normality
assumption has been applied to check for significant differences in the classifier’s performance regarding F1-score.

4.1 Full-length Sequences

At first, the models have been trained on the full-length time series with 2700 (45 seconds x 60 Hz) time steps. If a
participant has finished earlier than the maximum time limit of 45 seconds, the time series is padded with zeros [33, 37].

4.1.1 Effectiveness on the Circular & the Organizational Graph. MLSTM-FCN substantially outperforms the other
individual-independent models on the circular graph. The differences are highly significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01). It reaches
an F1-score of 0.83, while its standard deviation is relatively small and comparable to the standard deviation of ResNet,
which reaches an F1-score of 0.64. This is slightly better than the F1-scores of FCN and LR as the baseline classifier,
which both reach an F1-score of 0.63. The differences between ResNet, FCN and LR are not significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05).

On the organizational graph, MLSTM-FCN significantly outperforms ResNet and the baseline classifier, but the
advantage compared to FCN is not significant anymore. ResNet and FCN also significantly outperform the baseline
classifier, which reaches an F1-score of 0.58.

All four classifiers show substantial standard deviations in their F1-scores, indicating that the distribution of the data
samples into training and test set impacts the classifiers’ performance.

The F1-scores obtained by the classifiers on both graph types are depicted in Figure 4.

4.1.2 Efficiency. The efficiency of the models is measured by its inference time per sample. In that process, the time
required while applying the model to the test set is recorded. This value is divided by the number of samples in the test
set to obtain the inference time per sample.

The used classifiers show similar inference times on both graph types. Since LR is a statistical classifier, it is not
surprising that it requires very short inference times. While the inference times of ResNet (∼ 4 ms) and FCN (∼ 16 ms)
are also short, MLSTM-FCN requires the most inference time with about 105 ms per sample.
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Fig. 4. Illustration of the TSC models’ F1-scores on the 45 seconds long sequences for the circular and organizational graph. MLSTM-
FCN shows similar performance on both graph types, ResNet and FCN perform better on the organizational graph, where all three
deep learning models outperform the baseline classifier on the organizational graph. On the circular graph, ResNet and FCN show
similar performance as the baseline classifier. For detailed results refer to Table 3

.

4.2 Time Intervals

Similar to other studies [4, 29, 70], the full-length sequences are truncated to sequence lengths of one to ten seconds to
evaluate the classifiers’ performance on short time intervals and explore the feasibility of real-time interventions of
user-adaptive visualization systems.

4.2.1 Effectiveness on the Circular Graph. The F1-score on the time intervals decreased for all models. However, the
extent of the performance decreased differs among the classifiers. MLSTM-FCN is again the superior performing
classifier on the circular graph, significantly outperforming ResNet, FCN, and the baseline classifier. This corresponds
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Classifier Graph 𝐹1 AUROC Inf. Time P R

MLSTM-FCN C 0.83 (0.07) 0.89 (0.07) 104.58 (49.17) 0.83 (0.07) 0.83 (0.07)
O 0.82 (0.10) 0.83 (0.13) 103.75 (47.92) 0.82 (0.10) 0.82 (0.10)

ResNet C 0.64 (0.06) 0.62 (0.05) 15.83 (0.00) 0.67 (0.11) 0.62 (0.05)
O 0.71 (0.09) 0.71 (0.16) 15.83 (0.00) 0.73 (0.10) 0.71 (0.16)

FCN C 0.63 (0.12) 0.62 (0.09) 4.17 (0.00) 0.62 (0.18) 0.62 (0.09)
O 0.73 (0.17) 0.74 (0.17) 4.17 (0.00) 0.73 (0.19) 0.71 (0.17)

LR C 0.63 (0.13) 0.73 (0.16) 0.83 (0.00) 0.67 (0.18) 0.63 (0.11)
O 0.58 (0.11) 0.67 (0.15) 0.83 (0.00) 0.65 (0.18) 0.59 (0.08)

Table 3. 𝐹1-score (𝐹1), Area Under the Receiver Operating Characteristics (AUROC), Inference Time (Inf. Time), Precision (P) and
Recall (R) along with their standard deviations in parenthesis of the classifiers’ performance obtained after 10-fold cross-validation
for the circular (C) and the organizational (O) graph. The inference time is stated in milliseconds per sample. MLSTM-FCN is the
superior performing classifier in terms of 𝐹1-score. All deep learning classifiers at least match the F1-scores of the baseline classifier.
The FCN is the deep learning classifier with the least inference time; however, it can not outperform the statistical baseline classifier.

to a decrease of 12 % compared to its performance in the full-length sequences on the circular graph. ResNet and
FCN suffer from a more significant performance decrease of 23 % and 25 %, respectively. While ResNet and FCN also
significantly outperform the baseline classifier, the differences between ResNet and FCN are not significant.

The F1-scores obtained by the classifiers on the circular graph are depicted in Figure 5.

4.2.2 Effectiveness on the Organizational Graph. In contrast to the models trained on the full-length sequences, there
are no substantial differences between the two different graph types’ performances. MLSTM-FCN suffers from a 9 %
performance decrease on the organizational graph but still outperforms all other classifiers significantly. ResNet and
FCN, which have shown significantly diverging performance on the two graphs on the full-length sequences, suffer
from a major decrease of 31 % and 37 % respectively, reaching average F1-scores of 0.49 and 0.46. These values are equal
(ResNet) or minimally smaller (FCN) than their performance on the circular graph. While MLSTM-FCN and ResNet still
significantly outperform the baseline classifier, the performance advantage of FCN compared to the baseline is not
significant.

The F1-scores obtained by the classifiers on the organizational graph are depicted in Figure 6.

4.2.3 Efficiency. Compared to their inference times per sample on the full-length sequences, the inference times of
ResNet and FCN remain stable on the time intervals. They also do not correlate with the sequence length. In contrast,
the inference time of MLSTM-FCN shows a linear increase of about 184 ± 12 ms additional inference time per second of
additional sequence length. While the inference time of 95 ms for a one-second-long sequence is comparable with the
average inference time on the full-length sequences (105 ms), its inference time reaches approximately 1.3 seconds for a
ten seconds long sequence.

The inference times are depicted in Figure 7.

4.3 Summary of Results

MLSTM-FCN is consistently yielding the highest F1-scores and significantly outperforms the ResNet, FCN, and the
baseline classifier. ResNet and FCN show similar F1-scores; however, their performance is not substantially better than
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Fig. 5. MLSTM-FCN achieves the highest F1-score on the time intervals per sequence length on the circular graph. ResNet and FCN
cannot outperform the baseline classifier.

the baseline classifier on three of four experiments. On the time intervals of the organizational graph and the full-length
sequences of the circular graph, the baseline classifier even matches the performance of ResNet and FCN.

Regarding inference time, MLSTM-FCN has a clear disadvantage compared to the other classifiers. While its inference
time on the full-length sequences is still acceptable in human-computer interaction, its inference time on time intervals
increases linearly to more than one second on a ten-second long sequence. While ResNet shows already good inference
times, FCN reaches the best inference time per sample of all deep learning classifiers with about 4 ms per sample.
Unsurprisingly, none of the deep learning models can outperform the statistical baseline classifier in inference time.
ResNet and FCN show stable inference times on full-length sequences as well as on time intervals.

No consistent observation can be made regarding any performance differences between the two graph types. On the
full-length sequences of the organizational graph, the performance of ResNet and FCN improves substantially compared
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Fig. 6. MLSTM-FCN is again the superior performing classifier on the time intervals of the organizational graph. ResNet slightly
outperforms the baseline classifier, while shows similar performance as LR.

to the circular graph. In contrast to that, the performance of ResNet and FCN on time intervals is not affected by the
graph type. MLSTM-FCN shows no performance differences between the two graph types.

In summary, MLSTM-FCN is the classifier to choose when the highest accuracy possible is the primary concern, but
ResNet and FCN should still be considered when near real-time inference is required. Usually, deep learning models for
TSC outperform the statistical baseline classifier for the used eye gaze data.

4.4 Limitations of the Study

Any user evaluation has its limitations, and this study is no exception. It might be argued that the use of a low-cost eye
tracker with lower sampling rates is insufficient for scientific purposes. However, there is evidence that the EyeTribe’s
accuracy and sampling frequency are sufficient for performing fixation, pupillometry, and saccade analyses [60, 72].
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Fig. 7. While ResNet and FCN show a stable inference time per sample of about 16 ms and 4 ms respectively, the inference time
of MLSTM-FCN increases approximately linear to more than 1000 ms on a ten second long sequence. No deep learning model can
match the inference time of the baseline classifier.

In this study, the models, including their implementation, have been adopted from the original studies [37, 78], and
have not been tuned to fit the eye tracking dataset. The reported performances may not reflect the full potential of
the models. However, as the advantage of MLSTM-FCN is significant, the relative performance win over other deep
learning models is likely to hold after hyperparameter tuning. Additionally, inference time may be impacted by the
implementation of the models. In consequence, the way the authors of the original studies have implemented the
models’ may influence the performance regarding inference time presented in Section 4.1.2 and Section 4.2.3.

Since this study focuses on circular and organizational graphs, the generalizability of results to other graph types is
limited. Since the classifiers have been trained to predict task success based on the users’ answers to simple questions
as an indicator of user comprehension, a comprehensive understanding of a graph may rely on the user’s familiarity
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with different types of information visualization systems and search tasks. Future research can explore the relationships
among these variables for personalizing real-time user-adaptive interactions in visualization tasks.

5 DISCUSSION

In this study, three different deep learning classifiers are evaluated on users’ eye gaze data when interacting with a
circular and organizational graph. In particular, three deep learning classifiers for TSC are used to predict the participants’
task success based on their answers to various questions about the graph’s information.

5.1 To What Extent can Visual Search Task Success be Predicted from Sequential Eye Gaze Data?

This study results reveal that MLSTM-FCN, as the superior performing classifier, can infer task success from eye gaze
data with an F1-score of 0.82 on the full-length sequences.

The results suggest that the reason for the superior performance of MLSTM-FCN is its LSTM block since its fully
convolutional block is identical to the FCN. As observed in Fawaz et al. [19] and Wang et al. [78], ResNet and FCN
perform similarly in terms of F1-score, which is substantially worse than the MLSTM-FCN’s F1-scores.

All used classifiers yielded substantial standard deviations in their F1-scores (see Figure 4), indicating that the
distribution of the data samples into training and test set impacts the performance of the classifiers. This could suggest
that some participants’ eye gaze patterns differed fundamentally from others’ eye gaze patterns, making it difficult for
the models to generalize well enough.

On the other hand, MLSTM-FCN requires a substantially higher inference time per sample than the other classifiers.
While the LSTMs inference time on similar problems is sparsely reported in the literature, the results on the time
intervals suggest that its inference time correlates with the sequence length (See also Figure 7).

MLSTM-FCN shows high inference times, requiring more than 100 ms per sample on full-length sequences and up
to 1000 ms for time intervals. Even though an inference time of about 100 ms is still considered real-time in human-
computer interaction [4, 51, 56], inference times of more than 1000 ms might be considered too long for modern on-line
user-adaptive information visualization systems.

However, for a binary classification problem, an accuracy of 0.8 might not be considered good enough to drive
on-line data visualization systems. One factor limiting the model’s accuracy could be the different tendencies of the
features over time. Figure 8 shows two plots of a participant’s pupil size while giving a correct answer vs. two plots of
the pupil size while giving an incorrect answer. Incorrect answer 1 and correct answer 1 show a similar big variance in
pupil size, while incorrect answer 2 and correct answer 2 show less variance. Plotting on a sample basis has shown
similar behavior in about 10 % of the cases and was also observed on other features like the number of fixations. These
differences in time series belonging to the same class have two implications. At first, ideally 50 % of these cases should
be included in each, the training and the test set. However, this was not ensured when splitting the data. Secondly,
features showing the described behavior are less informative than others. Therefore, excluding them from the feature
set or using them AOI-based (change of pupil size within a certain AOI) like in Steichen et al. [70] could lead to better
performance of the classifier.

5.2 Is it Feasible to Infer the Users’ Task Success within the First Ten Seconds of Interaction?

After evaluating the classifiers’ performance on different sequence lengths from one to ten seconds, the results suggest
that the sequence length used to infer task success has no substantial impact on the performance of the classifiers within
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Fig. 8. Two plots of the pupil size while giving a correct answer vs. two plots of the pupil size while giving an incorrect answer. Note
that subtractive baseline correction has been applied, i.e., the change in pupil size is illustrated in the plots. The eye tracker records
the pupil size without a specific measure. Since the time series have been zero-padded to an equal length if the participant needed
less than 45 seconds, the plot shows a constant pupil size of zero in the end.

that period. The F1-scores of all evaluated classifiers oscillate with a maximum standard deviation of 0.026 (ResNet,
baseline classifier: 0.032) on the organizational and 0.02 (ResNet, baseline classifier: 0.008) on the circular graph.

These results indicate that most users acquire the essential information required to complete a given task successfully
within the first second of interaction with the graph. Using longer sequences than one second does not result in
significantly better classification performance. This suggests that the first second of interaction with a graph is critical
for intervention by the system.

However, since the F1-scores for full-length sequences (45 s) are substantially better than on shorter sequences, it
might be possible that some users require more than ten seconds to finalize the acquisition of the essential information.
According to the model proposed by Freedman and Shah [22] and Körner et al. [43], the individual differences such
as prior knowledge and experience in interaction with circular and organizational graphs can affect the users’ graph
comprehension. Some users may take longer to establish relations between the graph’s elements and comprehend the
information. Importantly, if the sequence used for classification is too short to comprise the whole process of the users’
graph comprehension, the predictions could become inaccurate.
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It is worth noting that Steichen et al. [70] found that classification accuracy is better on shorter time sequences at
the beginning of the data for some classification tasks. However, there are several differences in this study. While their
study aims to infer cognitive abilities, this study attempts to infer graph comprehension based on the predicted users’
success on a visual search task. Although the use of longer sequences to predict cognitive abilities could lead to more
noise, answers to a particular question might be determined at any time, and even change during the interaction.

Such a model can drive user-adaptive information visualization systems by providing a measure to decide if the
user understands the information imparted by the graph or if intervention by the system is necessary. A recent study
shows that users benefit from system-driven customization about the information content presented in an information
visualization system, which depends on the user characteristics of visualization literacy and locus of control [44].
However, which interventions are undertaken is not directly addressed in this study. The interventions depend on the
actual system and application, including (but not limited to) proposing alternative graph types, add reference lines to
the graph or highlight information, presenting complementary information (e.g., text), and changing the way how the
information is imparted (e.g., switch from a graph to a video) from the perspectives of user interface design. This study
aims to build computational models to infer the users’ task success, using varying time series eye gaze data.

5.3 Implications for User-adaptive Visualization Systems

The results of this study suggest that a computational model can infer task success from eye gaze data. Given this
finding, such a computational model can also be used to infer the users’ need for support during interaction with a
graph and trigger appropriate interventions in user-adaptive information visualization systems. As revealed in Lallé
and Conati [44] some users benefit from system-driven customization about the information content presented in an
information visualization system due to individual differences. In contrast to previous studies of user interaction data
such as mouse clicks and search behavior data [25, 26], such a system requires no other interaction data than eye gaze.
This facilitates the design of user-adaptive visualization systems since further interaction data like mouse clicks is not
required.

6 CONCLUSION & FUTUREWORK

Corroborating previous studies [68, 70], this study provides encouraging results to conclude that the inference of the
users’ task success from eye gaze data is possible. This study assesses task success based on the estimation if the user
has correctly acquired the graph’s information and shows that this approach is suitable to drive on-line user-adaptive
information visualization systems.

The used deep learning classifiers perform worse on time intervals than on full-length sequences. MLSTM-FCN can
infer task success with higher accuracy than a baseline classifier and previous models for this purpose. To consider the
model’s high inference time during system design, it is necessary to explore how the inference time of MLSTM-FCN
evolves on sequences between 10 and 45 seconds. Since this research question was out of this study’s scope, this needs
to be done in future work.

The presented results have been obtained using general deep learning models for TSC and simple eye gaze metrics.
The full potential of the models for driving on-line user-adaptive information visualization systems can be realized by
adding AOI (areas of interest) features and specific consideration of user characteristics [67] and fine-tuning the models
towards the objective of integrating such a model into user-adaptive systems.
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